METHODS OF MINERAL EXPLORATION IN THE ONHYM


METHODS OF MINERAL EXPLORATION IN THE ONHYM
Geology Geophysics Remote Sensing Geochemistry              
 Petroleum Exploration in Morocco started early in the last century and covers five major periods:

The period between 1900 and 1928 saw petroleum exploration in the Rharb Basin at the vicinity oil seeps. This led to the discovery of the Ain Hamra oil pool in 1923.The period from 1928 to 1958 saw the creation of BRPM (Bureau de Recherches et d’Exploitations Minières) in 1928, and the SCP (Société Chérifienne de Pétrole) in 1929 that carried out most of petroleum exploration activities.
Seismic reflection techniques were first introduced, in the Rharb and Prerif basins in 1935. It is not until 1955 that this tool was used to explore the Essaouira, Souss and Guercif basins. Oil and gas discoveries were made in the Prerif Ridges and in the Sidi Fili Trend. Cumulative production during this period reached 8 million barrels of oil.

From 1958 to 1981, the Hydrocarbon Law was passed and attracted international investments. Exploration by BRPM and its partners was extended to cover most of the basins of Morocco. Wells drilled during this period revealed commercial oil and gas accumulations in the Essaouira and Rharb Basins. By the end of 1981, cumulative production was 9 million barrels of oil and 35 BCF of gas.From 1981 to 2003, ONAREP (Office National de Recherches et d’Exploitations Pétrolières) was created by the moroccan government, with a mandate to explore for hydrocarbons in Morocco both by itself and jointly with foreign petroleum companies. Since the creation of ONAREP, 85 wells have been drilled, 50 of which were jointly with international companies. This activity led to the discovery of the gas/condensate field at Meskala (Essaouira) and of several biogenic gas accumulations in the Rharb Basin.

The Hydrocarbon Law was amended in 1992 and in 2000 providing Oil and Gas investors with some of the most attractive fiscal terms available internationally.

 In 2003, ONHYM was created as a merger of ONAREP and BRPM, beginning a new era with a dynamic strategy and improved synergy to adequately assess both the Hydrocarbon and Mining Potential of Morocco.



Fron January 2000 to December 2011, 20 610.25 Km² of 3D seismic and 70 100.45 Km of 2D seismic data have been acquired offshore.  Also, 7 040.02 Km of 2D seismic and 1 328.87 Km² of 3D seismic data have been acquired onshore.

Close analysis of success, and failure, of various exploration programs undertaken in Morocco demonstrate the attractiveness of the hydrocarbon opportunities of the country and suggest new hydrocarbon exploration concepts as well as new prospects awaiting for drilling.

Morocco is underexplored in terms of petroleum exploration and is considered as frontier zones.
The analysis of the data base of the existing wells underlines three important facts:
The number of hydrocarbon exploratory wells is extremely low in most  basins;Many wells did not reach their objectives due to technical problems, or were spudded  off structure;The number of exploration concepts tested so far is very limited.
Several viable petroleum systems, with good hydrocarbon potential, exist in Moroccan sedimentary basins.

Recent studies, integrating regional synthesis studies with substantial volumes of seismic data, particularly in the offshore, have generated new exploration concepts. These studies have also defined many structures that wait to be drilled.



Geological mapping is an essential tool for mining exploration work. It is carried out at different scales according to progress in exploration and generates geological maps that show the lithology of the outcrops and the structures with mineralization and mining potential.


The geological study during the survey and the mining works help to specify the source and the geometry of the mineral deposit

PROMOTION OF MOROCCAN SEDIMENTARY BASINS TO INTERNATIONAL OIL COMPANIES


PROMOTION OF MOROCCAN SEDIMENTARY BASINS TO INTERNATIONAL OIL COMPANIES

Since 2000, ONHYM has worked out and fulfilled a new strategy for promoting the Moroccan Sedimentary Basins. This new plan of action is characterized by new dynamics built on the mobilization of all the technical and financial resources of the Office in order to attract a wide range of oil partners to explore our basins. This new go-ahead relies on six core activities:


Participation, at suitable time, to international exhibitions and conferences.Door to door promotional campaigns to oil companies.Technical and data room presentations within the precincts of ONHYM.Technical presentations and booth exhibitions at international conferences.Preparation, improvement and updating of promotional equipment.Exploitation of all the data available on the basins to innovate and develop new play concepts.

METALLOGENIC PROVINCES IN MOROCCO


METALLOGENIC PROVINCES IN MOROCCO

Mineral deposits and mining prospects in Morocco are aligned with the metallogenic provinces that are associated with the major geodynamic events that characterize the geology of Morocco.

In this cratonized plinth, the eburnean orogeny is responsible of the gold bearing deposit formation of orogenic golden type whose the most important is the one of LOURIM (Tagragra and Akka buttonhole). Other occurrences are in Kerdou, Zenaga, Ighrem and Tata buttonhole. In this plinth, also exists a pneumatolithic mineralization on beryl, micas and feldspaths taken essentially in pegmatite seams.

MINERALIZATION RELATED TO THE PANAFRICAN CYCLE

Mineralization of Co-Cr Au-Cu related to the pre-panafrican rifting event:

This event gave rise to mineralization in the two paleogeographical domains that it created:

- In the platform, pre-panafrican rifting is responsible for the origin of Bleida’s copper mineralization.
- In the oceanic area, we primarily see the mineralization of the Bou Azzer district of Co-Au (both genetically and spatially related to serpentines), and the gold bearing mineralization of Tafrent in the aggregation at Sirwa, encased by amphibolites in a volcanic rock context.

Precious metal mineralization in the arc context :

In this context, the most typical mineralization are at the Saghro and Ougnat massifs. This includes the Tiouit mineralization of Au-Cu, Imiter silver bearing deposit, Qalaat Mgouna gold bearing mineralization, Taourirt Tamellalt mineralization, and several filonian polymetallic mineralizations like at Boumadine, Tizi Moudou, Assif Imider, and scattering in the lower proterozoic in Ouarzazate.

Copper mineralization related to the Adoudounian basin :

With a typology reminiscent of kupferschiefers, these (post-panafrican) mineralizations are situated at the base of the infracambrian sequence on the Anti-Atlas proterozoic plinth. The paleogeographical constraint of these copper mineralizations is demonstrated by their localization near and around the precambrian paleo reliefs and their position at a regional and stratigraphical level.


MINERALIZATION IN THE HERCYNIAN DOMAIN

The hercynian cycle is also a very productive metallogenic province with mineralization that is distributed among sub-provinces as follows:

Sulfurized pile sub-province of Jebilet guemassa

This is characterized by polymetallic volcanogenic mineralizations tied to the pre-orogenic vulcanism of western Maseta. The largest deposits of this type are: Hajar, Draa Sfar Kettara and Koudiat Aicha.

Peribatholitic mineralization under-province of central Morocco

The term metallogenic province does not apply strictly speaking, because they exist everywhere in the Hercynian Morocco. We recommend to use the notion of metallogenic hercynian age that results in mineralizations around the hercynian granitite. In central Morocco, we have both pneumatolitic and acidic origin mineralizations Achmmach pewter, the pewter deposit of Karit, the fluorine seam of El Hammam, the deposit of F-Pb-Ba-Ag at Zrahina, the pyro metasomatic concentrations of Sn-W around the granite of Ment, and the seams of Pb-Sb or Pb only of which the biggest is the one of Tighza. In the Jbilet, we have the seams of Sidi Bou Othmane, silver of Koudia El Beida and Koudiat Hamra and finally in the high-Atlas, there is the pyrometasomatic deposit of W-Cu-Mo of Azegour and mineralizations of W-Sn-Cu-Au around the Tichka massif.      

         
Recently, a new type of hercynian mineralizations was highlighted, such as the one of Jbel Malek (Au) (Tan-Tan region) and Azouggar N’Tilili (Pb-Zn-Ag-Au) (Southern Draa region)

MINERALIZATIONS IN THE ALPINE REGION

The alpine cycle is characterized by base metals, industrial minerals and rock mineralization. Beyond the filonian mineralizations of the pre-atlasic phase and post-jurassic compression, many mineralizations are stratiform and generated in a sedimentary context tied to the different cycles of maritime sequences. Because of the very large geographic distribution of mineralizations, it is appropriate to classify them by metallogenic age and/or tectonic phase.        

BPGC Filonian mineralization of the pre-atlas phase

This abrupt phase is responsible for many filonian mineralizations at low temperatures either in the Paleozoic plinth or in the triassic-jurassic recovery. We principally note the leaded seams of Tafilalet and Addana, the Pb-Cu-Zn seams of Jebilet and the central High Atlas and the barytine seams in Western and High-Atlas Jebilet.

Stratiform mineralization, basis of sequences

For this kind of mineralization formed in a sedimentary context, the plinth recovery contact played a very important paleo geographic role in the concentration of the metal. In the Triassic, the principal mineralizations are the red-bed lead-containing types of Zayda, the copper occurrences of Argana and gemme salt, gypsum and potash concentration of Mohamedia and Safi. In the Jurassic, there is a stratiform accumulation of manganese in Bouarfa and Tiharatine, the red-bed of Pb-Cu of Sidi-Rhamoune and the gypsum and anhydrite deposit of Safi basin. In the Cretaceous, the most important mineralizations are the manganese concentrations of Imini, the lead, zinc and copper’s mineralization of Merija and Tansrift, the phosphated mineralizations in Khouribga, Gantour, Oulad Abdoun and Bou Kraa basins and the marls and oil shale in Tarfaya, Boujdour, Timahdit and Tangier sectors.  
 
Pb-Zn mineralizations of Mississipi Valley type

For this kind of deposit, the Jurassic constitutes an important metallogenic period. It is the stratoic Kastic or Filonian mineralization, taken by the dolomites. The most important deposits are the ones of Boubker-Touissit Beddiane, Ouled mekta and Mibladen. We also see these kind of mineralizations in the central and oriental high-Atlas and are often localized next to basic intrusions. In the Rif, it is interesting to note the Pb-Zn deposit of Adeldal situated in the limestone dorsal and taken by a Zebred Triassic dolomite.    

Mineralizations tied to basic intrusions  :

These are the nickel occurrences associated to the gabbrous troctolitic intrusions in the central High Atlas (Tassent and Tirrhist).

-Mineralizations tied to neogene volcanism
The principal deposits associated to this volcanism are the bentonite and perlite concentrations in the oriental Rif. The principal deposits of bentonite are the ones of Gourougou, Tidiennit, Amjar, Terbia, Lhammachene, Azzouzet, Ibourhardain, Ikasmeouen and Oued Zmmour. For the perlite, the most important deposit is the one of Tidiennit.

-Placers
The principal placers are localized on the marine littoral. The most important one is Zr-Ti of Bouissafen in Tarfaya region. Occurrences of the same type are localized in Safi, Essaouira, Agadir, and Saîdia regions. On Oulmes granite exists an alluvial placer of cassiterite.

The Gharb basin in Morocco is among the basins that were heavily explored, leading to the discovery and the exploitation of small deposits.

The Gharb basin in Morocco is among the basins that were heavily explored, leading to the discovery and the exploitation of small deposits.
Following the First World War, the CCRF (Compagnie Chérifiennes de Recherches et Forages) began exploration in the basin, which was well-known for a "bright spot" of biogenic gas. Several oil companies drilled the prospect resulting in several discoveries. The BRPM / PETROFINA joint venture created in 1963 commercialized several discoveries of gas that were delivered to the refinery at Sidi Kacem and the CMCP. The company has sold over 700 million SCM gas.

In 1980, another consortium of BRPM / ELF AQUITAINE / PCS  / and KPC, the Kuwait Petroleum Corporation, conducted exploration work in the southern basin, where the Oulad Youssef (OYF ) and Oulad Bendich (OBD) were discovered in 1980. ONAREP, having succeeded BRPM in 1981, has also done some prospecting on its own or in partnership with other companies. ONAREP discovered the Oulad Kharti and Nouirrat deposits in 1981. In 1986, the Sidi El Harti deposit was discovered in partnership with APEX PETROFINA.

Production in the Gharb basin is generally dry gas (99% methane), making it easy to use with few problems. Despite their small size so far, exploitation is profitable because of their easy access by drilling (depth ranging from 900 to 1800 m) and also the presence of potential customers in the region. The recovery rate for deposits in the Rharb Basin is around 90%.

Bernard Sapoval dans « Universalités et fractales » :


Bernard Sapoval dans « Universalités et fractales » :

« La percolation est des phénomènes critiques les plus simples. Un phénomène est dit critique pour caractériser le fait que les propriétés d’un système peuvent changer brusquement en réponse à une variation même très faible des conditions extérieures. Dans les conditions critiques, le système hésite entre deux états différents, il est instable et présente de grandes fluctuations. (…) Percolation vient du latin « percolare » : couler à travers. Dans la pratique courante, on sait faire du café avec un percolateur qui injecte de l’eau dans une poudre de café comprimé. (…) Pour obtenir du café, il faut qu’il y ait suffisamment de passage entre les grains pour laisser l’eau filtrer. L’eau peut ne pas passer, soit parce que des pores sont bouchés, soit parce que les connexions entre les pores sont bloquées. Pour avoir du café, il faut que l’eau puisse « percoler ». Il n’est pas si facile de faire du bon café. Vous pourriez penser qu’il n’y a qu’à diluer les grains et avoir des pores grands ouverts. Mais si les pores sont trop grands et contiennent trop d’eau, on extraira bien les arômes, mais le café sera trop dilué. Au contraire, si la poudre est trop serrée, on bouchera aléatoirement trop de pores et… plus de café. (…) La réalité nous en offre des illustrations spectaculaires. Ainsi les incendies de forêt en l’absence de vent. (…) La percolation a de nombreuses applications dans l’étude et la maîtrise des propriétés des matériaux hétérogènes comme les matériaux composites. (…) Le plus souvent, le pétrole se trouve dans des milieux ou des roches poreuses d’où l’on ne sait extraire que 30 à 40% de cette source d’énergie présente. (…) On a affaire à la propagation d’un fluide moins visqueux dans un milieu poreux aléatoire. (…) La représentation la plus simple d’un milieu poreux est un assemblage de conduits de tailles variables, tailles réparties selon une certaine loi de probabilité. Les gros pores sont plus facilement envahis que les petits. (…) L’invasion qui se produit suivant ce mécanisme a été baptisée « percolation d’invasion »

La percolation est un processus physique critique qui décrit pour un système, une transition d’un état vers un autre. C’est un phénomène de seuil associé à la transmission d’une « information » par le biais d’un réseau de sites et de liens qui peuvent, selon leur état, relayer ou non l’information aux sites voisins. Ce phénomène a été étudié pour la première fois en 1957 par Hammersley qui cherchait à comprendre comment les masques à gaz des soldats devenaient inefficaces. Le terme de percolation vient du phénomène similaire qu’est le passage non plus d’un gaz, mais de l’eau à travers le percolateur de la machine à café qui est un filtre au même titre que le masque à gaz. (Dans ce cas l’information est le fluide, eau ou gaz, et les sites sont les pores du filtre qui relayent l’information s’il ne sont pas bouchés) Le seuil de percolation correspond à l’apparition au sein du système d’un amas de taille infini. Cette apparition est décrite mathématiquement comme étant une « transition de phase du second ordre ».

La percolation

La percolation est cette capacité pour un fluide (une information, une rumeur, une nouveauté technologique, un revenu ou un liquide) de traverser un tas ou un système chaotique, par des déplacements de proche en proche. Le seuil de percolation est le début d’une transformation (de la rétention à l’écoulement) ou d’une émergence (un insight, une illumination, le cri d’eureka). On retrouve la différence entre information et connaissance. Sur un glacier, la percolation de l’eau (phase liquide) dans la neige contribue à la formation du névé, puis de la glace. Dans un terrain de type sagne ou tourbière, faute de pente, l’eau d’un ruisseau peut difficilement se frayer un chemin. Dans le cas de la Goutte de l’Oule, malgré la pente, on ne peut parler de ruisseau que dans la mesure où l’homme l’aide à se montrer comme un cours (cheminement, mouvement d’écoulement) d’eau et non comme un marais stagnant (qui ne coule pas). Dans l’altération des roches de surface, la vitesse de circulation des eaux au contact des minéraux est le facteur principal. D’où l’importance de la vitesse de percolation de l’eau, à travers l’horizon en cours d’altération. Cette vitesse est fonction du climat (pluviosité et température de l’eau). Lors de la formation des roches métamorphiques, dans la profondeur de la lithosphère, les fluides (eau, CO2, CH4, O2, N2) restent abondants, même à de grandes profondeurs. Cela implique que la percolation se prolonge assez loin dans l’intérieur de la Terre.

Formalisation. Le concept mathématique de percolation a été formulé par le mathématicien anglais J. M. Hammersley, en 1957. Il cherchait à décrire le passage d’un fluide à travers un milieu poreux. Peu à peu, le concept de percolation s’est répandu dans de nombreux domaines. Généralement, il cherche à décrire un phénomène critique (crucial). Avant le seuil de percolation, il n’y a pas d’écoulement. Au-delà de ce seuil, l’écoulement est très large. C’est pourquoi on emploie ce terme en épidémiologie. Il pourrait aussi s’appliquer à la mode et à tout phénomène d’imitation ou de contagion : dans une forêt en feu, un arbre ne brûle que si plusieurs de ses voisins sont en flammes. On retrouve le jeu de la vie de Conway. La percolation peut être isotrope (identique dans toutes les directions) ou anisotrope (le feu va peu contre le vent et revient difficilement sur la terre brûlée). Les modèles mathématiques de la percolation permettent de comprendre le passage d’un chaos vers un réseau. On réalise une multiplication aléatoire de liens entre des couples de points d’un ensemble. Au-delà d’un certain seuil de connexion, un écoulement se réalise de part en part. L’émergence d’un véritable réseau solidarise le fonctionnement de l’ensemble. Un chaos structurant précède ce qui peut apparaître, rétrospectivement, comme une pensée organisatrice.

Pierre-Gilles de Gennes, prix Nobel français de Physique en 1991 (pour ses découvertes sur les cristaux liquides et les polymères), est l’auteur de travaux sur la percolation. En 1969, P. W. Kasteleyn et C. M. Fortuin ont montré la correspondance entre les grandeurs mesurant la percolation et celles utilisées pour simuler des transitions de phase. La percolation réunit des éléments, de proche en proche, pour former des amas (mouillés, malades, conducteurs, à la mode, etc, selon le domaine) de plus en plus gros. L’amas infini possède une propriété d’auto-similitude qui en fait une fractale. On peut donc mesurer sa dimension fractale (dimension non-entière, dimension de Hausdorff-Besicovitch). Combinant géométrie et statistiques, la physique des systèmes désordonnés regroupe les travaux sur la percolation, sur les objets fractals et sur le chaos.

(Dans tous les domaines, la percolation peut se traduire par des arrêts ou par des écoulements brutaux imprévisibles (choc économique par disparition brutale et contagieuse de la confiance). Un désordre local (Sarajevo, 1914 ; Wall Street, 1929 ; New-York, 11 septembre 2001) peut entraîner un désordre général.

MORE THAN 85 YEARS OF EXPERIENCE


MORE THAN 85 YEARS OF EXPERIENCE

GDI is a Canadian company with a national presence. We have over 85 years of experience in the facility services industry. Our broad knowledge and competencies in integrated facility services will contribute to the success of your business.

Our excellent service delivery distinguishes us from other facility services providers. We offer innovative cleaning techniques, best in class capabilities and unrivalled experience. You will enjoy clean, healthy and welcoming work and leisure environments.
Every day.

 Our Specialized Services

Cleaning Services
Technical Services
Energy Management
Hotel Services
Disaster Recovery
Event Support Services
 We seamlessly deliver our services within various types of building environments and always with an unwavering dedication to client satisfaction.

Office properties
Shopping Centres
Industrial and Institutional Buildings
Educational Facilities
Health Care Centres
Airports
Hospitals
Laboratories
National Retail Stores
Hotels
We provide unequalled capability, credibility and competence to the Canadian market. Our standardized and disciplined approach to the business results in an industry-leading ability to deliver the best value to clients.

THE GREENING OF YOUR ENVIRONMENT



We strongly believe in protecting the environment and are proud to be a corporate citizen.

A Green Interest. In all our activities, we manage risks and seek sustainable solutions, notably by mandating certified green products.

               

 Environmental and Quality Management Systems

Our determination to be a leader in protecting the environment motivated us to implement  techniques and processes in compliance with ISO 9001 and ISO 14001.

The following are initiatives taken to protect the environment.

We continuously evaluate the impact on the environment of our products and equipment
We conduct environmental audits at the beginning of every new contract
We keep our personnel informed about our policies and procedures
We offer continual training program
We measure our environmental performance on a monthly basis
We save energy and reduce waste
By therefore combining environmentally-friendly cleaning products, safe equipment, implementation of environmental management systems and continual training, we are providing our clients with a clean and healthy working environment.

Benefits from our green cleaning programs are numerous: they help increase worker satisfaction, improve employee morale, reduce absenteeism, and promote productivity, efficiency and retention. Benefits of green cleaning programs are well documented as they also reduce health problems associated with allergens, chemical sensitivities and contaminants, such as mould and bacteria.

GDI Executive Vice President


Réal Paré has over 30 years experience in the janitorial industry. He was also President of the Quebec Building Service Contractors Association from 1989 to 2003, and has been President of the Parity Committee for the Building Services in the Montreal region since 1989. Mr Pare completed a Certificate in Administration from the Université du Quebec à Trois-Rivières and was previously the President of Montcalm Technical Services.

President and Chief Executive Officer


President and Chief Executive Officer

Claude Bigras has spent his career in the construction, janitorial and facility maintenance industry since 1982. In 1994 he joined GDI, and with increasingly senior roles became President and CEO of GDI in December 2004. This period was marked with significant organic growth, leading the Company to become the largest janitorial and facility services contractor in the country.

Today, he offers leadership, perspective and experience, and drives the development of the group of companies as well as key financial and strategic planning. In addition, Claude brings an exceptional track record of successful acquisitions and integration; with a keen understanding and insight into the business and related segments. This perspective has been integral in making GDI what it is today; the largest Integrated Facility Services Provider in Canada, and most of all, profitable.

Your directions start from Jodhpur, Rajasthan, India. And Mundra, Gujarat, India is the place you need to reach.


Your directions start from Jodhpur, Rajasthan, India.
And Mundra, Gujarat, India is the place you need to reach.

Need a distances summary? You can see the Distance from Jodhpur to Mundra!

Want to see a bigger Map? Want to see the how the bigger picture looks? You can see the Map from Jodhpur to Mundra!

Want to rent a car for your journey? Get Estimated Jodhpur Car Rental from Jodhpur to Mundra. We tell you the approximate Car Rental for different types of cars; for the road directions between Jodhpur and Mundra!

You wish to do a trip from Jodhpur to Mundra in your own vehicle? Check your fuel budget here using our Fuel Price Calculator, to estimate your trip cost. We have updated Petrol, Diesel, AutoGas and CNG prices across all major cities in India!

Wish you could just fly and jump from Jodhpur to Mundra? Check the Flight distance between Jodhpur and Mundra.

With the directions you might also want to know the Travel timeYou can find the the Travel Time from Jodhpur to Mundra. This will help you estimate how much time you will spend driving from Jodhpur to Mundra.

Need all the information above in a single view to plan your travel? Check how to Travel from Jodhpur to Mundra. Help yourself to better plan your travel from Jodhpur to Mundra.